Mark scheme - Introducing Chemical Reactions (F)

| Question | | Answer/Indicative content | Marks | |
| :--- | :--- | :--- | :--- | :---: | :--- |
| 1 | | | C | Guidance |
| 2 | | | Total | (AO2.1) |

3.1 Introducing Chemical Reactions (F)

			Copper least reactive correct order - 2 marks magnesium as most reactive and copper as least - 1 mark		
		iii	$\mathrm{Mg}+\mathrm{CuSO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{Cu} \checkmark$	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	ALLOW any correct multiple, including fractions DO NOT ALLOW and / \& instead of '+' ALLOW a minor error in subscripts / formulae
			Total	4	
9	a	i	anode	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times \\ 1.2) \end{gathered}$	All correct $=2$ marks 1 or 2 correct $=1$ mark
		ii	Positive electrode: bromine \checkmark Negative electrode: lead \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times \\ 2.2) \end{gathered}$	DO NOT ALLOW bromide ALLOW reversed 1 mark
		iii	$\mathrm{PbBr}_{2} \checkmark$	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
	b	i	All points plotted correctly scores 2 mark $\checkmark \checkmark$ Straight line of best fit through the points \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} 2 \times \\ 2.2 \\ 1.2) \end{gathered}$	ALLOW $\pm 1 / 2$ square 3 or 4 points plotted correctly scores 1 mark ALLOW correctly drawn line of best fit through incorrectly drawn points; this may be a curve
		ii	0.72 (A) $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 3.1 \mathrm{a}) \end{gathered}$	ALLOW answer in the range $0.70 \mathrm{~A}-0.74 \mathrm{~A}$ / ecf
		iii	FIRST CHECK ANSWER ON ANSWER LINE If answer $=\mathbf{4 7}(\mathrm{g})$ award 2 marks $\begin{aligned} & 5 \mathrm{~A}=15.5(\mathrm{~g})=15.5 \times 3=46.5(\mathrm{~g}) \checkmark \\ & =47(\mathrm{~g})(2 \text { sig. figs }) \checkmark \end{aligned}$	(AO2.1 1.2)	ALLOW $1.0 \mathrm{~A}=3.1(\mathrm{~g})$ (from graph or table) $10(\mathrm{~A})=31(\mathrm{~g})$ and $5(\mathrm{~A})=1.55(\mathrm{~g}) \checkmark$ $15(\mathrm{~A})=31+1.55=(46.5) 47(\mathrm{~g}) \checkmark$
			Total	11	
10			$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Formulae \checkmark Balancing \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2.2 \\ \times 2) \end{gathered}$	ALLOW any correct multiple, including fractions ALLOW $=/ \rightleftharpoons$ instead of \rightarrow NOT and / \& instead of \rightarrow

14	a	i	both points correctly plotted (1) reasonable line of best fit (1)	2	
		ii	-4 to $-10^{\circ} \mathrm{C}$ dependent on line of best fit (1)	1	
		iii	as the number of carbon atoms increases the boiling point increases (1) idea that larger molecules have greater intermolecular forces (1)	2	
	b		$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}(2) \\ & \text { correct formulae (1) } \\ & \text { balancing (1) } \end{aligned}$	2	balancing mark is conditional on correct formulae ALLOW any correct multiple, e.g. $2 \mathrm{C}_{3} \mathrm{H}_{8}+10 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ ALLOW $=$ or Δ or \rightleftharpoons for arrow DO NOT ALLOW 'and' or \& for + ALLOW one mark for correct balanced equation with minor errors in case, subscript and superscript $\text { e.g. } \mathrm{C}^{3} \mathrm{H}^{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
			Total	6	
15			Correct - Any two from: sulfuric acid reacts with zinc and / or zinc carbonate to make zinc sulfate (1) zinc reacts with acid to make hydrogen (1) zinc carbonate reacts with acid to make carbon dioxide (1) Incorrect - Any two from: Both reactions do not make hydrogen (1) zinc and / or zinc carbonate will not react with hydrochloric acid to make zinc sulfate (1) zinc carbonate does not make hydrogen when it reacts with acid (1)	4	
			Total	3	
16			* Please refer to the marking instruction point 10 for guidance on how to mark this question. Level 3 (5-6 marks) Suggestion would enable pure dry samples of all three components to be obtained in the correct sequence with clear explanations of why the methods work. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks)	6	AO3.3a: Analyse information in the table to develop experimental procedures - Wash solid C with water and allow to dry. - Evaporate solution of \mathbf{B} to obtain solid crystals. - Using a magnet will separate \mathbf{A} from other two. - Add water to mixture of \mathbf{B} and \mathbf{C}. - Filter mixture of \mathbf{B} and \mathbf{C}. - Rinse and dry solid \mathbf{C}. - Evaporate solution of B. AO2.2: Apply knowledge of purification techniques

			Suggestion would enable pure dry samples of two of the components of the mixture to be obtained with an attempt at an explanation. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Suggestion would enable a pure sample of one of the components to be obtained. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		- \mathbf{A} is magnetic or \mathbf{B} and \mathbf{C} are not magnetic. - A can be removed from the mixture as it will stick to the magnet. - B will dissolve but \mathbf{C} will not. - Solid \mathbf{C} will be left after filtering.
			Total	3	
17			B	1	
			Total	1	
18		i	Same number of electrons in outer shell / all have 7 electrons in outer shell (1)	1	ALLOW outer electrons or valence electrons rather than electrons in the outer shell ALLOW valence shell rather than outer shell DO NOT ALLOW the wrong number of electrons in the outer shell
		ii	$2 \mathrm{Na}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NaBr}$ Correct formulae of reactants and products (1) Balancing - depend on correct formulae (1)	2	ALLOW any correct multiple of the equation including fractions ALLOW $=$ or \rightleftharpoons instead of \rightarrow DO NOT ALLOW and or \& instead of + ALLOW one mark for correct balanced equation with minor errors of case and subscript e.g. $2 \mathrm{NA}+\mathrm{Br} 2 \rightarrow 2 \mathrm{NaBr}$
		iii	KAt (1)	1	
			Total	4	
19	a		$\begin{aligned} & \mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}(1) \\ & 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \leftrightharpoons(1) 2 \mathrm{SO}_{3}(1) \\ & \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(1) \end{aligned}$	4	One mark for each correct balanced equation One mark for reversible reaction sign
	b		$17(\mathrm{~g})$ of ammonia makes $66(\mathrm{~g})$ of ammonium sulfate	1	

3.1 Introducing Chemical Reactions (F)

		So 51 g makes 198 g of ammonium sulfate (1)		
		Total	$\mathbf{5}$	
20		$\mathrm{C}_{15} \mathrm{H}_{32} \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{C}_{3} \mathrm{H}_{8}(1)$	1	ALLOW any correct multiple
		Total	$\mathbf{1}$	

